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Monodisperse latex microspheres ranging in size from submicrometer to several 
micrometers in diameter can be prepared in the laboratory. The uniformity of 
diameter is important for instrument calibration and other applications. However it 
has proved very difficult to manufacture commercial quantities of mondisperse latex 
microspheres with diameters larger than about 3 micrometers owing to buoyancy 
and sedimentation effects. In an attempt to eliminate these effects NASA sponsored 
a Space Shuttle experiment called the Monodisperse Latex Reactor (MLR) to 
produce these monodisperse microspheres in larger sizes in microgravity . Results 
have been highly successful. 

Using technology gained from this space experiment, a ground-based rotating 
latex reactor has been fabricated in an attempt to minimize sedimentation without 
using microgravity. The entire reactor cylinder is rotated about a horizontal axis to 
keep the particles in suspension. 

In this paper we determine the motion of small spherical particles under gravity, 
in a viscous fluid rotating uniformly about a horizontal axis. The particle orbits are 
approximately circles, with centres displaced horizontally from the axis of rotation. 
Owing to net centrifugal buoyancy, the radius of the circles increases (for heavy 
particles) or decreases (for light particles) with time, so that the particles gradually 
spiral inward or outward. 

For a large rotation rate, the particles spiral outwards or inwards too fast, while 
for a small rotation rate, the displacement of the orbit centre from the rotation axis 
is excessive in relation to the reactor radius. We determine the rotation rate that 
maximizes the fraction of the reactor cross-section area that contains particles that 
will not spiral out to the wall in the experimental time (for heavy particles), or that 
have spiralled in without hitting the wall (for light particles). Typically, the rate is 
close to 1 r.p.m., and design rotation rate ranges should span this value. 

1. Introduction 
There is a need for microscopic spherical particles of an extremely uniform 

(monodisperse) size. These particles, called microspheres, are used as calibration 
standards for optical and electron microscopes, and for many other scientific 
purposes. Since 1947 monodisperse polystyrene latexes have been widely used for 
these applications (Vanderhoff 1964). 

These early particles ranged in size from submicrometer to several micrometers 
(pm) in diameter. Over the years, as larger polystyrene microspheres were prepared, 
a major difficulty in their manufacture was that amounts of coagulum produced 
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FIGURE 1.  A prototype Rotary Reactory to minimize gravitational settling (or creaming) for 
the growing latex particles. 

always increased along with size, giving complete coagulum instead of particles in the 
size range greater than about 10 pm. Attempts to adjust the chemistry of the latex 
to reduce coagulum usually resulted in the production of a non-monodisperse latex, 
contaminated with particles of other sizes (Vanderhoff, El-Aasser & Micale 1978). 

The main causes of these problems were buoyancy and sedimentation effects. 
During the early stages of a seeded emulsion polymerization reaction using standard 
techniques and equipment, the large monomer-swollen latex seed particles tend to  
rise to the surface of the mixture (cream) because the average density of the particles 
is less than that of the water medium in which they are suspended. During the later 
stages of the polymerization, the growing seed particles become heavier as more 
lower-density monomer is converted to  higher-density polymer, and they settle to 
the bottom of the reactor. As the particles are grown to sizes larger than about 2 pm 
(at which size they show only little Brownian motion) the rates of creaming and 
settling become so rapid that it is not possible to keep the particles in suspension 
using conventional paddle or propellor-type stirrers without resorting to  excessive 
agitation rates. The growing particles are soft and sticky, and increasing the stirring 
rate causes more violent particle-particle collisions, resulting in flocculation. Since 
agitating the particles at rates high enough to prevent creaming or settling also 
results in flocculation, a different method of agitation had to be developed to produce 
these larger-size monodisperse latex particles. Another possible solution was to put 
the particles in an environment in which no stirring was needed. 

Because this difficulty in producing usable quantities of monodisperse polystyrene 
latex particles in sizes greater than about 3 pm is gravity related, NASA sponsored 
a research effort to determine whether it would be possible to manufacture them in 
the microgravity environment of space. 
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This effort resulted in the highly successful Monodisperse Latex Reactor (MLR) 
Space Processing Experiment, which has now been flown into Earth orbit on five 
space shuttle missions. With Dr John W. Vanderhoff of Lehigh University as the 
principal investigator, this MLR experiment has successfully produced large-particle 
monodisperse polystyrene latexes up to 30 pm in diameter with coefficients of 
variation of less than 1 YO (Vanderhoff et al. 1987). 

The 10 pm and 30 pm microspheres manufactured aboard the Space Shuttle are 
currently being marketed by the US National Bureau of Standards as Standard 
Reference Material (SRM) 1960 and SRM 1961 respectively. These are the first 
products ever manufactured in space to be commercially marketed on Earth 
(Kornfeld 1985; US Patent No. 4247434). 

During the course of the space experiments, one of the authors (D.M.K., who is 
also NASA Co-Investigator with Dr Vanderhoff on the MLR experiment) proposed 
that, as part of the supporting ground-based research, the same seeded emulsion 
polymerization recipes currently being used in space also be tested in a laboratory 
rotating-cylinder reactor. He then designed and fabricated a prototype Rotary 
Reactor (figure 1) to minimize gravitational settling on Earth for the growing latex 
particles. 

In this apparatus a cylindrical polymerization reactor chamber is rotated about its 
horizontal axis within a water bath. The Rotary Reactor is designed to maintain 
uniformity in particle concentration and temperature profile with minimal or no 
stirring. The particles are kept in suspension only through the rotation of the reactor ; 
the slow rotation of the entire chamber during polymerization helps to prevent the 
growing particles from either creaming or settling. Once steady rotation of the seed 
latex mixture is achieved in this apparatus, there is no agitation to cause the violent 
particle collisions that result in flocculation. 

It has already been established experimentally that large-size latex particles up to 
100 pm diameter can be successfully suspended and polymerized at low reactor 
rotation rates. Particles manufactured thus far in this prototype reactor have 
exhibited coefficients of variation inferior to those produced in the Space Shuttle, but 
it is expected that latex quality will improve as latex recipes are optimized for this 
type reactor and optimum rotation rates are determined for each particle size and 
latex recipe. 

As mentioned earlier, the density of the seed latex particles increases with time, 
through the conversion of the low-density styrene monomer into the higher-density 
polystyrene polymer, so the growing particles undergo a constant increase in density 
throughout the course of the reaction. While slowly rotating in this manner the 
particles are strongly influenced by viscous drag and tend to rotate with the fluid 
medium. Their motion relative to the rotating fluid is determined by a balance of 
their gravitational and centrifugal forces with the viscous drag, and the sign of the 
buoyancy forces depends on the density difference between the particles and the 
fluid. 

A t  higher rotation rates, more-dense particles will tend to be centrifuged outward 
and deposited on the cylinder wall of the Rotary Reactor. Less-dense particles will 
be centrifuged inwards and will form a mrtss near the axis. A lower limit on the 
rotation rate is determined by the time it takes the particles to fall through (or rise 
through) a distance close to the radius of the reactor cylinder. Clearly there is an 
optimization problem for the rotation rate. 

In this paper the particle orbits in the Rotary Reactor are determined, and the 
optimization problem is solved with the assumption that the particle density and 
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radius remain fixed. Section 2 contains the formulation and solution of the particle 
orbit problem and $3 contains the formulation and solution of the rotation rate 
optimization problem. In 94 the principal conclusions are stated. 

2. Formulation and solution of the problem for particle orbits 
Basic mechanisms for the suspension of heavy particles in a rotating cylinder of 

fluid were discussed by Otto & Lorenz (1978) but a formal solution was not obtained. 
A more complete study of the particle orbit problem was presented by Schatz (1977), 
but the centrifugal buoyancy was not handled correctly. Related studies by Dill & 
Brenner (1983), Nadim, Cox & Brenner (1985), Aoki et al. (1986) and Annamalai & 
Cole (1983), addressed parts of the problem. In their later work, Annamalai & Cole 
(1987) obtained an orbit solution essentiallly equivalent to ours, in the context of 
bubbles. None of these references analysed the optimization problem studied here. 

In this section the particle orbit problem is correctly solved. The ambient fluid is 
taken to be in solid-body rotation about the horizontal z-axis through the origin (see 
figure 2) with rotation rate 52. Then the fluid flow in the (z,y)-plane is given by 

u=51xx=(-Qy,52x).  (1)  

The corresponding pressure distribution is 

P = Po + PfW2r2  - g y )  3 (2) 

where p ,  is a constant, pr is the fluid density and r2 = x 2 +  y2, so that r is the 
cylindrical radius coordinate. The gradient of this pressure balances the gravitational 
and centrifugal forces on the fluid. 

The vector equation of motion for a spherical particle of radius a, density pp, 
volume V ,  and mass M at position x is 

M x ” =  - M g j + P + D ,  (3) 

where the stress forces exerted by the fluid on the particle have been separated into 
a pressure force P and a drag force D. The prime and double prime are used to denote 
the first and second time derivatives. 

The pressure force is defined as 

P = -  pdS, s (4) 

where p is the fluid pressure given by equation (2) above, and the integration is over 
the particle surface. Using the Gauss theorem, 

P = pEv(-522z,g-522y). (5) 

The g-term is the familiar Archimedes buoyancy force. The Q2 term is the 
corresponding inward pressure gradient which would cancel the centrifugal 
acceleration of the liquid which the particle has displaced. This term was apparently 
omitted by Schatz (1977). 

The drag force is written using the Stokes slow-flow approximation. In this viscous 
limit 

D = - ~ ~ v u ( x ’ - ~ ~ x x )  (6) 
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FIGURE 2. Schematic view along the axis of symmetry of the Rotary Reactor showing the 
coordinate system used. 

where g is the fluid viscosity. The drag force opposes the motion of the particle 
relative to the fluid. The approximation requires that the Reynolds number and the 
Taylor number be much smaller than unity, where 

Re = p f a V / v ,  (7) 

Ta = pr a2Q/q, (8) 
and V is the relative motion of the particle ( V  = Ix'-51 x XI).  

motion can be written as 
Combining these expressions, the two non-trivial components of the equation of 

where the drag constant, 

x~'+cx'+%2~x+cQy = 0, 
PP 

Pt 4 y"+cy'+-Q2y-cQx = --g, 
PP PP 

(9) 

is the rate at which motion decays through drag forces alone and Ap = pp-pr. The 
term on the right-hand side of (10) arises from the particle weight less the Archimedes 
buoyancy force. The Q2 terms on the left-hand sides of (9) and (10) arise from the 
centrifugal pressure term in (5). 

The coupled x- and y-equations can be solved conveniently by introducing the 
complex variable 

w = z+iy. (12) 
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Multiplying (10) by i and adding (9) gives the complex, second-order, linear equation 

The general solution of (13) is the sum of a particular integral and a complementary 
function 

w = wo + A  , exp (m, t )  + A ,  exp (mz t ) .  (14) 
For this problem the particular integral is the constant 

The real and imaginary parts represent the equilibrium position of the particle in the 
(x,y)-plane. The complex constants m, and m2 are the roots of the quadratic 
auxiliary equation 

m2+cm+ksz2-icQ) = 0. (16) 

The complex constants A ,  and A ,  are determined by the initial values w(0) and w’(0) 
a t  time zero, using the equations 

A ,  +A,  = w(0) - wo, 
m,A,+m,A, = w’(0). 

These simultaneous equations can be easily solved for A ,  and A,. 

the equilibrium position (xo, yo). Consider the solution 
The general solution (14) represents the superposition of two spiral motions about 

w = x+iy = A,exp(m,t), (19) 

where A ,  = aexp (ie), (20) 
m1 = m, + im,. (21) 

Here a is the positive amplitude of A ,  and 0 is its phase, while m, and m, are the real 
and imaginary part of m,. The real and imaginary parts of w are 

x = aemrtcos(m,t+O), 

y = aemrtsin(m,t+O). 

The instantaneous spiral radius is aemrt, and grows or decays exponentially 
depending on the sign of m,. The phase angle m, t + 0 determines the direction of the 
vector displacement (2, y) in the (x, y)-plane. 

We now use the inequality 
sz 4 c. (24) 

Note that for 7 - cm (corresponding to a 
diameter of 20pm), c is 4 . 5 ~  104s-l. Thus even for much larger radii, this 
assumption is valid for a very wide range of practical rotation rates. 

g/cm s-l, pp - 1 g/cm3 and a - 
Using this approximation, the spiral centre (15) is a t  

. gAP 2ga2Ap wo = x0+1yo = - - 
QCPp 97Q ’ 
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so that the spirals are centred about a point on the x-axis, displaced horizontally 
from the axis of rotation. At  this point the drag force balances the net weight. 
Naturally, this point must be inside the rotating reactor, since if the point is outside 
or on the rotating reactor wall all the particle orbits will strike the wall. This puts a 
lower limit on 0: 

where b is the radius of the rotating reactor. For IApl/pp - 0.1, g - lo3 cm/s2, b - 
3.0 cm and for the above value for c, Qmin is 7 . 4  x 

Using the assumption (24) ,  the two roots of the quadratic equation (16)  can be 
approximated as 

(27)  

m2 = -c-i0, (28)  

s-l,  cf. table 2. 

m, = i 0+d ,  

where the growth or decay rate for the first spiral, in ( 2 7 ) ,  is 

Ap Q2 

P P  

& = - -  

which is real and much less than 0. Note that for the second spiral, the real part is 
-c ,  so that the radius decreases exponentially on the very short drag timescale, l /c.  
Thus the second spiral solution becomes negligibly small in a few drag timescales, for 
any realistic initial conditions. The full general solution therefore can be 
approximated as 

x = x,+aedtcos(52t+8), (30) 

y = aebtsin(Ot+O), (31)  

where a and 8 are determined by the initial displacement from the centre of the 
spiral. 

Note that the radius of the displacement from the spiral centre is aedt, where d is 
much less than 0 and has the sign of Ap. The rotation rate of the spiral is 0, so the 
particle rotates about the centre of the spiral at  the same rate as the fluid rotates 
about the axis. The exponent for growth or decay of the radius during the 
experimental time T is 

Whether Ap is positive or negative, we will normally require that the exponent E is 
of order unity or less, for otherwise either most of the particles spiral out to the 
boundary of the reactor or they spiral in until their concentration is excessive. Thus 
we require 

For T = 10'9, or slightly longer than a day, the upper limit for 0 using the 
previous rtssumptions is 2.12 s-l. 

Physically, the spiralling in or out is caused by the centrifugal force less the inward 
centrifugal pressure force. That is why it has the sign of Ap. This force is balanced 
by the drag force to determine the rate of spiralling inwards or outwards. 
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By equating the lower and upper limits, (26) and (33), for Q, we can obtain an 
approximate upper limit for the radius of the particles for the rotating reactor to be 
useful, 

Using 7 - 
before, we obtain amax as 1.42 x 
upper limit is discussed further in the following section. 

g/cm s-l, lApl = 0.1 g/cm3, b = 3 cm, g = lo3 cm/s2 and T = lo6 s, as 
cm, corresponding to a diameter of 284 pm. This 

3. Optimization of the rotation rate 

dimensionless variables : 
From the previous section, the choice of the rotation rate involves the following 

(36) 

Here we have introduced the dimensionless quantity qj3, independent of the rotation 
rate, and defined by the relations 

The definition using 93, and the factor 2, are for later convenience. 
The limit Qmin corresponds to the strict requirement 

a <  1,  (38) 
so that the spiral centre is inside the rotating reactor. The limit Q,,, corresponds to 
the loose requirement 

so that the centrifugal spiralling is not excessive during the period T. The radius 
changes by a factor e" during this time interval. 

An optimization problem can be defined for both signs of the particle density 
excess Ap. For positive Ap, the particles spiral outward, and we maximize the 
fraction F of the reactor cross-section area for which particles starting there will not 
hit the reactor wall in the time interval T. For negative Ap, the particles spiral 
inwards, and we maximize the fraction F of the reactor cross-section area containing 
particles which have not hit the wall in the preceding time interval T. T is much more 
than a rotation period, and is taken as los s (or 27.8 h) for our examples. Note that 
this analysis makes no use of the loose inequality (33). 

In both cases, the area involved is a circle with its centre at the spiral centre. The 
distance from the spiral centre to the cylinder wall is (b - Isol). The radius of the circle 
is therefore 

(40) 

€ 5  1, (39) 

rF = (b - IxJ) e-€. 
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FIGURE 3. Cross-section of the rotary reactor. Heavy or light particles a t  A are stationary, 
supported against gravity by the counterclockwise or clockwise flow around the centre 0. Other 
particles move around A in circles, spiralling slowly outward or inward. Particles in the crescent 
hit the wall on the first cycle. Heavy particles initially between the concentric circles spiral out to 
hit the wall in time T. Heavy particles in the inner circle spiral out to fill the outer circle. Light 
particles initially filling the outer circle fill the inner circle after time T. In both cases we choose 
the rotation rate t o  maximize the area of the inner circle. 

The fraction F is the ratio of the area of this circle (the smallest circle in figure 3) 
to the cylinder cross-section area (the largest circle). Thus 

= (1 - exp ( - $3/S2). (41) 
In this last expression for F, $3 remains constant while SZ and S vary. F is maximized 
by differentiation with respect to 6 and setting the derivative to zero. Hence 

- = $3. 
63 

1-6 

This is a cubic equation in 6, with a single solution in the allowed interval 0 < S < 
1, for all positive $-values. Approximate analytic solutions for S can be obtained 
when $ is either very small or very large ; otherwise numerical or graphical methods 
can be used, or S can be obtained using table 1 as described below. 

Once the optimum 8 and F have been found, for a particular set of rotating reactor 
parameters determining the $* value (37), the optimum rotation rate is given by 
(35), in the form 

Using (42), with the definitions (35) and (37), this can be written as the alternative 
a = s2,,,/6. (43) 

form 

where 

a = a,( 1 - S)-t, 

a,=-- - 
$ 2bT 

is independent of the particle size and density, and 

(44) 

(45) 

of the fluid properties. For our 
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s 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 

$43 
0.000 13 
0.001 11 
0.00397 
0.0100 
0.0209 
0.0386 
0.0660 
1.1067 
0.1657 

e-€ F (1 -8)-i 
0.974 0.856 1.017 
0.946 0.725 1.036 
0.916 0.606 1.056 
0.882 0.498 1.077 
0.846 0.403 1.101 
0.807 0.319 1.126 
0.764 0.247 1.154 
0.717 0.185 1.186 
0.664 0.133 1.221 

6 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

P 
0.250 
0.370 
0.540 
0.785 
1.143 
1.687 
2.560 
4.094 
7.290 

e-c 
0.6065 
0.5427 
0.4724 
0.3851 
0.3114 
0.2231 
0.1353 
0.0588 
0.01 11 

F 
0.0920 
0.0597 
0.0357 
0.0191 
0.0087 
0.0031 
0.0007 
o.Ooo1 

10-6 

(1 - B)-t  
1.260 
1.305 
1.357 
1.419 
1.494 
1.587 
1.710 
1.882 
2.154 

Parameter Equation Explanation 

6 (35) 

(37) 

(36) 
(41) 

Spiral centre, scaled by the reactor radius b, for the optimized rotation 

Problem parameter, proportional to sixth power of the particle 

Spiral radius changes by factor e6 during time T. 
Area occupied by particles not interacting with reactor wall during 

rate. 

radius a. 
e-' 
F 

(l-C+ (44) Optimum rotation rate, scaled by a, = (g/ZbT)S. 
time T, as a fraction of reactor cross-section : paximized value. 

TABLE 1. Parameter values corresponding to uniformly spaced &values 

example, with g = lo3 cm/s2, b = 3 cm, and T = lo5 s, 52, is 0.118 s-l or 1.132 r.p.m. 
The expression (45) is useful, because (1 - S)-i does not increase significantly from 
unity until S approaches unity. 

For the easy case of very small 4, Qmin is much less than Q,,,. The approximate 
analytic solution is 

The corresponding optimum rotation rate for small q5 is 
a = # ,  E = @ ,  F =  1-34. (46) 

52 = 52,(1+&25), (47) 
or approximately Q,. The rotation rate is independent of the particle and fluid 
properties so long as they ensure that q5 is small. 

The example introduced in the previous section leads to a very small $-value. 
Using those values, 

] (48) 
B~~~ = 7.4 x 10-4 s-1, nmax = 2.12 s-1, 4 3  = 2(~,~,/s2,,)2 = 2.44 x 10-7, 

6 = 4 = 0.00625, 8 = f# = 0.003 12, F = 1 -34 = 0.9813. 

The optimum rotation rate is accurately given by (47), and is almost exactly 52,. The 
spiral centre is a t  

which is an imperceptible displacement from the reactor axis. 
On the other hand, the approximate solution for large q5 is 

1x,1 = bS = 0.019 cm, (49) 

S =  1-#-3, e=B3 ,  F=q5-6exp(-q53). (50) 
This is the difficult case of large particles, with Qmi, much greater than a,,,. The 
optimum f2 is only slightly larger than Qmin, and the particles centrifuge so rapidly 
that the fraction k' is exponentially small, and the Rotary Reactor is in effect useless. 

For intermediate values of 43, as given by (37), the use of table 1 may be preferable 
to solving the cubic equation (42), particularly since F is insensitive to S near the 
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optimum value. The table shows optimal values of S spaced uniformly from zero to 
one, with the corresponding values of 

The table can be used, with hand interpolation, to determine values for the other 
parameters, assuming an optimized rotation rate, for any value of #3 (or of 8 or F). 

To illustrate the application of table 1, consider the example given in the previous 
section where the radius is calculated using Om,, = Qmin. This gives in succession 

a = amax = 1.42 x cm, Om,, = SZ,, = 2452, = 0.1494 s-l, 

$3 d3 = 2, 8 = 0.77, 8 = - = 1.68, 
2S2 

Qmin- - 
6 (1-8)s 

F = (1 - e-2E = 0.0018, Q = - " - 0.1939 s-l. 

Here 6 is obtained from d3 by interpolation in the table, and 8 and F are then 
obtained from the formulae. The fraction F of the particles not hitting the wall is 
unacceptably small, even at the optimum rotation radius. 

To determine the largest radius for which a fraction F of 0.5 can be obtained, we 
again look at the table, and obtain approximately, 

S = 0.2, $3 = 0.01. 

From (37), 

which gives a radius limit of 5.9 x 
for our example. The corresponding optimum rotation rate is 

(a/u,,)' = s3 = (0.4135)6, 

cm (corresponding to a diameter of 117 pm) 

51,/(1-S)$ = 0.1278 8-l. 

4. Conclusions 
A rotary reactor is a cylinder of fluid rotating about its horizontal axis in order to 

keep particles in suspension. Such a reactor has been used to produce larger latex 
microspheres in the laboratory without flocculation, with results approaching those 
obtained in space. 

An accurate solution for the path followed by a particle in a rotating reactor has 
been obtained. The path depends on whether the particle is heavier or lighter than 
the fluid. For counterclockwise rotation, a heavy particle spirals outwards around a 
spiral centre displaced to the right of the axis. A light particle spirals inwards around 
a centre displaced to the left. The spiral rotation rate is the same as the rotation rate 
of the reactor. The relative change in the radius, for each spiral rotation, is very 
small. 

Physically, the horizontal displacement of the spiral centre from the axis of 
rotation is determined by the condition that the net weight or buoyancy should 
balance the viscous drag from the fluid flow past the particle. The spiralling outwards 
or inwards is due to the centrifugal buoyancy (i.e. the centrifugal force on the particle 
as compared with the centrifugal force on the fluid it displaces). 

There are two constraints on the rotation rate of the reactor. It must exceed the 
minimum value (26), to keep the spiral centre inside the reactor. And it must not be 
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much larger than the maximum value (33), since either too many particles hit the 
reactor wall or the particle concentration becomes excessive (for light particles 
spiralling inwards). 

For both cases, there is a natural optimization problem, to choose the rotation rate 
to maximize the fraction of the reactor cross-section area which contains particles 
which either will not spiral out to the reactor wall during the experimental time, or 
have spiralled in without hitting the wall. 

The optimization problem was solved to determine the optimum rotation rate and 
the corresponding fraction value for any set of parameters. Remarkably, the 
optimum rotation rate is independent of the particle and fluid properties for small 
particles, and increases only a little as the particle size increases. 

Table 2 presents the parameter values for the three examples used in the text. The 
fluid properties, density difference, reactor diameter, and experimental time are the 
same in each case. Particle diameters of 20, 284, and 117 pm are considered. The 
computed rotation rates are presented in r.p.m. units for engineering convenience. 
The optimum rotation rate maximized the success fraction F of the reactor cross- 
section area. The spiral centre displacements (from the reactor axis) are shown. The 
distance of each particle from the spiral centre changes by the indicated factor during 
the experimental time. 

For the first column of values, the particle diameter was chosen as a typical value 
of interest. The minimum rotation rate is much less than the nominal maximum, and 
a high success fraction is obtained, with a small spiral-centre displacement and a 
radius change factor close to unity. 

In the second values column, the particle diameter was chosen to make the 
maximum and minimum rotation rates equal. The optimum rotation rate is 
somewhat higher, the spiral centre is near the reactor wall, the radius changes by a 
factor of over five, and the success fraction is very small. 

For the third column, the particle diameter was chosen to give a success fraction 
of a half. The other parameter values are shown. 

The time T in the table is roughly appropriate for latex microsphere processing. 
Note that the optimum rotation rate given by (44) and (45) varies only with the one- 
third power of g/bT, and is practically independent of the particle radius and density, 
provided (37) is small. Thus the optimum rotation rate is close to 1 r.p.m. for latex 
microspheres, and is probably between 0.1 and 10 r.p.m. for a very wide range of 
microgravity simulations. 

Further work is required for a full application of this analysis to the production 
of monodisperse latex microspheres. As described in § 1,  the monomer-swollen seed 
particles are buoyant in the early stages, and converge on the spiral centre. In the 
later stages, the particles shrink slightly and become heavier than water, and the 
spiral centre crosses the axis. The heavier particles centrifuge out as the 
polymerization approaches completion. 

The risk and extent of coagulum formation during this process, and the deviations 
from a monodisperse size distribution due to variations in the particle distribution, 
are unknown. It can be expected that even if the particles collide near the spiral 
centre as they centrifuge in during the early stages, the forces between the particles 
will be much smaller than for particles creamed to the top in a non-rotating reactor. 
This is because the centrifugal accelerations are extremely small. Thus coagulum 
formation might be minimal. In the late stages, as particles centrifuge out and hit the 
wall, there will be further particle collisions, with again the possibility of coagulum 
formation or size dispersion. 
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Quantity 
Particle diameter 
Water viscosity 
Water density 
Density difference 
Reactor diameter 
Experimental time 
Rotation rate minimum 
Nominal rotation rate maximum 
Optimal rotation rate 
Spiral centre displacement 
Radius change factor 
Optimized success fraction 

Symbol 
2a 
71 
PI 

2b 
T 

AP 

5 0  
e-= 
F 

Values 

20 
0.01 
1 
0.1 
6 

0.0071 

1.13 
0.019 
0.997 
0.981 

105 

20.2 

284 
0.01 
1 
0.1 
6 

1 O6 
1.43 
1.43 
1.85 
2.31 
0.186 
0.0018 

117 
0.01 
1 
0.1 
6 

0.243 
8.43 
1.22 
0.60 
0.882 
0.500 

105 

Unit 

Pm 
g/cm s-l 
g/cm3 
g/cm3 
cm 

r.p.m. 
r.p.m. 
r.p.m. 
om 

8 

- 

TABLE 2. Typical parametric values to illustrate rotation rate limits 

A further issue for study involves the beginning of production, and the dynamics 
and thermodynamics of raising the temperature, with or without stirring. The 
stirring could also be continued into the polymerization stage. 

Finally, we assumed that the solid-body rotation of the fluid is not disturbed by 
the presence of the particles. However, recent experiments by Kornfeld show 
significant secondary flows driven by concentration variations, for 0.3 YO suspensions 
of 50 pm latex particles, at  rotation rates below 1 r.p.m. The dependence of this 
phenomenon on concentration is weak, while its dependence on rotation rate is very 
abrupt ; at 1.4 r.p.m. there is no observable modification from uniform rotation, 
while at 0.7 r.p.m. the flow field and particle distribution are totally different. We 
plan further study of this effect. 

Dr William Fowlis died in December 1988. 
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